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control, non-transgenic alfalfa (CA), transgenic resveratrol-glucoside accumulating 

alfalfa (TA).  
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Abstract 

Plants have been genetically enhanced to produce a number of products for agricultural, 

industrial and pharmaceutical purposes. This technology could potentially be applied to 

providing chemoprevention strategies to the general population. Resveratrol (3,5,4’ – 

trihydroxystilbene) is a compound that has been shown to have protective activity against 

a number of cancers and could be an ideal candidate for such an application. Alfalfa that 

was genetically modified to express resveratrol-synthase was used as a model in applying 

biotechnological approaches to cancer prevention. The transgenic alfalfa, which 

accumulates resveratrol as a glucoside (piceid = trans-resveratrol-3-O-β-D-

glucopyranoside) (152 ± 17.5 g piceid/g dry weight), was incorporated into a standard 

mouse diet at 20% of the diet by weight and fed for 5 weeks to  6-week old, female CF-1 

mice (N=17-30) that were injected with a single dose of azoxymethane (5 mg/kg body 

weight). While the addition of resveratrol-aglycone (20 mg/kg diet) to the basal diet 

reduced the number of aberrant crypt foci/mouse, the transgenic alfalfa did not inhibit the 

http://dx.doi.org/10.1080/01635580701308208


www.manaraa.com

                                                                                                                        Kineman  

 

2 

number, size or multiplicity of aberrant crypt foci in the colon of the CF-1 mice relative 

to control alfalfa which does not accumulate resveratrol-glucoside. However, diets 

containing transgenic alfalfa with an exogenous β-glucosidase (860 U/kg diet) did 

significantly inhibit the number of aberrant crypt foci in the distal 2 cm of the colon of 

the mice relative to mice fed diets containing the transgenic alfalfa without the enzyme 

(p<0.05; Fisher’s Combination of p-values). The β-glucosidase alone appeared to have no 

effect on the inhibition of aberrant crypt foci. These results suggest that piceid in 

transgenic piceid-accumulating alfalfa was not bioavailable.  

 

 

Introduction 

      Colorectal cancer is the third most common cause of cancer-related illness in adults 

living in the United States (1). Data from case-control studies have suggested that diets 

rich in fruits and vegetables are protective against colon cancer (2), although findings 

from recent prospective studies reveal that this correlation may not indicate a causal 

relationship (3,4). Plants produce an array of phytochemicals as secondary metabolites 

for defense purposes (5). Several of these compounds have been shown to have cancer-

preventing activity in laboratory studies (6). However, the concentration or 

bioavailability of these health-beneficial constituents is often very low in edible plants 

(7), which may partially explain the inconsistency between epidemiological and recent 

prospective studies. In recent years, there has been increased interest in developing 

strategies to grow crops for health-promoting purposes (8). Genetic-engineering 

approaches have been successfully employed to increase the yield or introduce 

polyphenolic compounds into plant crops (9). A successful chemoprevention strategy 

could involve genetically modifying crops to increase the availability of some of these 

bioactive constituents.  

    One of the most studied phytochemicals in recent years has been resveratrol (3,5,4’-

trihydroxystilbene). Resveratrol is a phytoalexin synthesized in a variety of plant species 

in response to external stresses such as injury, UV irradiation and fungal infection (10). 

In the human diet, resveratrol was found in highest concentrations in red wine, grapes and 

peanuts (11,12). Epidemiological studies have shown an inverse correlation between the 

intake of red wine and the incidence of cardiovascular disease (13). It is proposed that 

resveratrol is partly responsible for the health benefit acquired from red wine.  

      Interest in resveratrol as a chemopreventive or therapeutic agent stems from an earlier 

report that showed that resveratrol inhibited cellular events associated with all stages of 

carcinogenesis - tumor initiation, promotion and progression (14). Since then, resveratrol 

has been shown to have growth inhibitory activity in a variety of human cancer cell lines 

and in animal models of carcinogenesis (15 and references therein).  

    A transgenic alfalfa that accumulates resveratrol (152 ± 17.5 µg resveratrol-glucoside 

/g dry weight) was developed to protect alfalfa against root rot (16). Alfalfa normally 
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does not express resveratrol-synthase (RS) and, therefore, does not produce resveratrol. 

In the transgenic alfalfa, RS catalyzes the synthesis of resveratrol from the metabolic 

precursors p-coumaroyl CoA and malonyl CoA. Resveratrol in these plants is 

accumulated as trans-resveratrol-3-O-β-D-glucopyranoside (also known as piceid (RG)). 

    The aim of the present study was to investigate the potential effects of the alfalfa that 

was genetically-modified to express RS on colon carcinogenesis in the mouse model of 

azoxymethane (AOM)-induced carcinogenesis using aberrant crypt foci (ACF) as short-

term markers. ACF are putative preneoplastic lesions that directly correlate to risk of 

colon cancer and tumor size in humans (17). Resveratrol was previously reported to 

inhibit the number and multiplicity (aberrant crypts per focus) of AOM-induced ACF in 

the colorectal mucosa of F344 rats (18). Mucin-depleted foci (MDF) and β-catenin 

accumulating crypts (BCAC) are subsets of ACF that have been identified on the bases of 

morphological and biochemical changes, respectively (19). Both MDF and BCAC are 

purported precancerous lesions but are currently not well characterized. Since ACF are 

widely accepted biomarkers for assessing the chemopreventive potential of agents in the 

colon, for our initial studies of the transgenic resveratrol-accumulating alfalfa, we elected 

to use classic ACF lesions to assay the potential potency of this crop against colon 

cancer.   

    We report here that transgenic alfalfa that accumulates RG in combination with an 

exogenous β-glucosidase inhibited the number of ACF in the distal colon of CF-1 mice. 

This apparent protective effect against AOM-induced ACF was not observed with the 

transgenic alfalfa or the β-glucosidase alone. These results suggest that RG is not 

bioavailable and that the modification of polyphenolic-glucosides by endogenous 

enzymes may be needed to realize the potential health benefits of this transgenic crop. 

 

Materials and Methods 

Reagents and Chemicals: 

      Trans-resveratrol-aglycone (Rag) was purchased from the Toronto Research Institute 

(Ontario, Canada). The purity of the resveratrol was estimated to be > 98% by the 

manufacturer. α-galactosidase from Aspirgillus niger was purchased from the National 

Enzyme Company (Forsyth, MO). High-performance liquid chromatography (HPLC) 

grade acetone and acetonitrile were purchased from Fisher Scientific (Liberty Lane 

Hampton, NH). All diet ingredients were purchased from Harland Tekland (Madison, 

WI). All other reagents were purchased from Sigma-Aldrich (St. Louis, MO). 

Transgenic Alfalfa: 

     A single alfalfa (Medicago sativa) genotype from the Regen SY germplasm (20) was 

transformed with resveratrol-synthase (RS) cDNA from peanut (Arachis hypogaena) and 

analyzed for the presence and expression of RS and the accumulation of the RG 

metabolite at the Samuel Roberts Noble Foundation in Oklahoma as previously described 

(16). Clones of the transformed plant as well as untransformed control clones of the same 
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genotype were grown at the Samuel Roberts Noble Foundation in Oklahoma and shipped 

to Iowa following drying and grinding as described below. They were planted in the field 

at Ames, IA in adjacent plots, last harvested in October 2004. When plants reached the 

late bud or early flower stage, they were harvested by clipping aboveground biomass at 5 

cm. Biomass was subsequently washed with water and dried in a forage drying oven at 

55°C. The dried plant material was coarsely ground in a Wiley mill and then re-ground to 

a powder in a UDY mill with a 1mm exit filter. 

Mice and Diets: 

      CF-1 mice (6 weeks old) were obtained from the Charles Rivers laboratory 

(Wilmington, MA) and housed individually in stainless steel wire-mesh cages in a 

temperature controlled room with a 12-hour light:dark cycle. After one week of 

acclimatization, the mice received one intraperitoneal injection of AOM (5 mg/kg body 

weight) or saline. Three days after the injections, the mice were randomized and assigned 

to experimental diets, which they were fed ad-libitum, for 5 weeks (N=3-10/group in 3 

replicates). Mice were assigned to one of four diets: 1). A basal diet (BD) based on the 

standard diet recommended by the American Society for Nutritional Sciences report for 

mature rats (AIN-93) (21), 2). BD with control alfalfa (CA), 3). BD with transgenic 

alfalfa (TA) and 4). BD with Rag.  

      Diets were prepared by mixing all dry ingredients with water (25% by dry weight of 

diet). Diets were then rolled out, cut into thin strips and dried at room temperature. 

Alfalfa was added at 20% by dry weight into the diets in partial replacement of dextrin 

(60% of dextrin added to control diets) (Table 1). The TA that was added to the diets 

contained 152 ± 17.5 μg RG /g dry weight, thus these diets contained 30.5 ± 3.5 mg 

RG/kg diet. Trans-Resveratrol-aglycone (Rag) was added to the diets in equal molar 

concentration (20 mg/kg diet) to the RG by dry weight of the diet. In subsequent 

experiments, β-glucosidase was added to diets at 860 U/kg of dry diet. Since purified -

glucosidase was not commercially feasible at the time of this study, α-galactosidase, 

which was verified to have 12.5 ± 0.5 U β-glucosidase activity/mg, was used as a source 

of glucosidase activity. The amount of α-galactosidase (2600 α-galactosidase U/kg of 

diet) added to diets was determined by extrapolating the recommended human dose of 

Beano to mice on a daily energy basis (equal to 0.675 α-galactosidase U /Kcal in 

humans).  

Resveratrol-glucoside identification in diets by HPLC analysis 

      To confirm the stability and uniform distribution of RG and Rag in diets, 2 g of 

crushed diet sample was extracted in 50 ml of a 90% methanol/10% water (v/v) solution 

at room temperature for 2 days under minimal light exposure. The samples were 

centrifuged at 1000 x g and the supernatants were evaporated and reconstituted in 1 ml 

methanol. The extracts were filtered and 10 µl of each extract was injected into a C18 

column (2.1*150mm; Alltech Altima). Compounds were separated using a 45-minute 

gradient from 20-60% of acetontrile in water with a flow rate of 0.3 ml/min. Eluding 
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peaks were monitored at λ=308 and 280 nm with a UV diode array detector (Beckman 

Instruments, Fullerton, CA). The spectra of peaks at 308 nm were compared to those of a 

trans-resveratrol-glucoside standard (Apin Chemicals, UK). 

Analysis of ß-glucosidase activity in diets 

      To estimate the β-glucosidase activity of α-galactosidase, the procedures described by 

King (22) were followed with some modifications. Briefly, various concentrations of α-

galactosidase (250-2500 ng/ml) were incubated with 1 mM of 4-methylumbelliferyl-β-D-

glucoside for 30 minutes at 37°C. The reaction was stopped using sodium citrate, and the 

florescence of the final product (4-methylumbeliferone) was measured using a Sequoia 

Turner Model 450 fluoromoter set at gain 1 with 360 nm excitation and 450 nm emission. 

      To measure β-glucosidase activity in the diets, 0.2 g of diet sample was crushed in a 

0.1 M citric acid/0.2 M sodium phosphate buffer (pH=5.0). The suspension was vortexed 

and 50 µl was added to 450 µl of 1 mM 4-methylumbelliferyl-β-glucoside and incubated 

for 30 minutes at 37°C. The reaction was stopped by the addition of 1.5 M sodium citrate. 

The β-glucosidase activity of assayed samples was quantified by comparing the 

fluorescent readings of the final reaction to the concentration vs. the fluorescence curve 

of a 4-methylumbeliferone standard.  

Analysis of Aberrant Crypt Foci 

      After feeding the experimental diets for five weeks, mice were killed by decapitation. 

The colon and rectum were collected from each mouse and rinsed thoroughly with 

phosphate buffer saline (PBS). The colon and rectums were dissected longitudinally and 

fixed flat in 10% buffered formalin (pH 7.5) for 24 hours. The samples were stained with 

0.2% methylene blue for 10 minutes and the ACF/colon were scored for each mouse at 

10-fold magnification as described by Bird (23). ACF number, size, multiplicity (number 

of AC/focus) and distribution were recorded in 2 cm increments, starting at the rectum in 

a blinded fashion. The sizes of ACF were scored with an eyepiece graticule.  

Statistical Analysis 

     The data presented in this paper were analyzed using SAS software (SAS Institute) 

and are expressed as means ± SE. The first experiment was conducted in three replicates 

and the significance of the differences between ACF means, changes in body weight 

(final weight-initial weight) and food consumption (g/food/day) were assessed by 

performing a two-way analysis of variance (ANOVA). Specific differences between 

groups were analyzed using a student’s t-test as the post-hoc test. Because the availability 

of alfalfa at harvest times was limited due to the weak growth performance of both the 

non-transformed and transformed alfalfa lines, follow-up comparisons of diets with and 

without α-galactosidase were conducted in multiple studies following different harvests. 

In these follow-up studies, group means within experiments were analyzed using a one-

way ANOVA followed by a student’s t-test for specific comparisons. Treatment 

comparisons between follow-up experiments were made using Fisher’s procedure for 
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combining p-values (24). All statistical tests performed on the data were two-sided, and a 

value of P<0.05 was considered statistically significant. 

 

Results 

Β-glucosidase activity of α-galactosidase 

     The relationship between the amount of 4-methylumbelliferone (4-MU) formed vs. α-

galactosidase concentration was linear in the concentration range of 125 - 2,000 ng 

enzyme/ml following incubation with the substrate 4-methylumbelliferone-β-D-glucoside 

(4-MUG) for 30 minutes at 37°C (Figure 1). The standard curve plot for the relationship 

between fluorescence vs. the  amount of 4-MU was linear, in the range of 0.003-0.05 

µmoles of 4-MU (Figure 1, insert). This plot was used to convert fluorescent readings to 

4-MU produced in the β-glucosidase-catalyzed deglycosylation of 4-MUG. Based on this 

assessment, the β-glucosidase activity of α-galactosidase was estimated to be 12.5 ± 0.5 

β-glucosidase U (µmoles 4-MU liberated from 4-MUG) mg enzyme-1 min-1. To test the 

reliability of our assay, a β-glucosidase enzyme (G0395, Sigma Aldrich) with a reported 

activity of 2.1 β-glucosidase U mg enzyme-1 min-1 was measured as well. The measured 

fluorescence of the β-glucosidase enzyme was linear in the concentration range of 200-

4000 ng/ml (figure 2) with an estimated activity of 1.9 ± 0.03 β-glucosidase U mg 

enzyme-1 min-1.  

Effect of diets on body weight and food consumption 

     The mice gradually gained weight throughout the duration of the experiment but, as 

table 2 demonstrates, the change in body weight [(final weight (29.6 ± 2.4 g) – initial 

weight (26.4 ± 2.1 g)] between treatment groups was not significant (mean gain= 3.2 ± 

1.6 g, p=0.5). Food intake (g/mouse/day) did not differ between treatments in the first 

experiment (4.0 ± 0.4 g/day/mouse, p-value=0.23). Also, there was no difference in 

change in body weight or in food intake in mice fed diets supplemented with α-

galactosidase compared to mice that were fed diets that did not contain the enzyme in the 

follow-up experiments (data not shown). 

Effect of treatments on formation of aberrant crypt foci in experiment 1 

    The number of aberrant crypts was scored for different regions of the colon as defined 

by 2 cm increments starting at the most distal end adjacent to the rectum. Aberrant crypts 

formed mainly in the distal 2 cm of the colon. The number of ACF in the most distal 2 

cm of the colon was significantly lower in mice fed basal diets supplemented with Rag 

relative to the other diets (p-value < 0.05) (table 2). However, the number of ACF in the 

distal colon of mice fed TA was not significantly different from mice fed CA (p=0.5). 

Additionally, the number of ACF in the colon of mice fed CA with Rag (means= 2.5 ± 

1.8 and 5.8 ± 1.5 in two replicates N= 5 and 9) was not significantly reduced compared to 

mice fed CA diets without Rag (means= 4.8 ± 2.5 and 8.8 ± 1.7 in two replicates N=10 

each, p= 0.5 for first replicate comparison and p=0.2 for second replicate comparison).         
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      There was no significant difference in the multiplicity (mean of all treatments= 1.4 ± 

0.4 AC/focus, p=0.3) of ACF or number of ACF in the middle 2 cm (mean of all 

treatments=2.4 ± 2.5, p= 0.3) and proximal 1 cm (mean of all treatments=0.3 ± 0.7, 

p=0.1) of the colon in the CF-1 mice. There was also no significant difference in the size 

of ACF (mean=2.0 x 10-2  ± 0.7 x 10-2 mm2, p=0.4), although this was assessed in only 

two of the three replicates. ACF were detected in 8% (4/50) of mice injected with saline 

and were not confined to any single treatment. 

      The amount of alfalfa added to the diets (20% by dry weight) was derived from 

previous studies in our lab showing that the number of AOM-induced ACF lesions in the 

colon of CF-1 mice fed diets containing resveratrol concentrations as low as 20 mg 

Rag/kg of diet (equivalent to the number of moles of piceid in diets containing 20% of 

the transgenic alfalfa) were significantly reduced (data not shown). Resveratrol at higher 

concentrations (40- 100 mg Rag/kg diet) significantly inhibited the number of ACF 

lesions formed, but the differences between these groups were not significant. 

Furthermore, we were concerned that supplementing alfalfa beyond 20% by dry weight 

would compromise the nutritional integrity of the diets.  

Effect of treatments with β-glucosidase on formation of aberrant crypt foci in follow-up 

experiments.   

    As with the first experiment, the incidence of ACF was mainly limited to the distal 2 

cm of the colon in all follow-up studies. The number of ACF in the entire colon and distal 

region of the colon was significantly reduced in the mice fed diets containing TA with α-

galactosidase compared to the number of ACF in mice fed diets containing TA without 

exogenous α-galactosidase (Table 3).  The difference in the number of ACF in the entire 

colon or distal 2 cm of the colon was not significant between the BD and the BD 

containing α-galactosidase nor was the number of ACF different between diets containing 

20% CA and diets containing the CA with α-galactosidase. ACF number did not differ 

between treatments with or without α-galactosidase in the middle or proximal region of 

the colon in any of these studies (data not shown). Size of ACF was assessed in only one 

replicate for each treatment in follow-up studies. As with the first study, there was no 

significant difference in ACF size (mean= 2.7 x 10-2 ± 0.6 x 10-2 mm2 , p=0.8) or 

multiplicity (mean= 1.4 ± 0.5; p=0.2) between treatments in the follow-up studies.  

 

Discussion 

    The principal finding of this study was that TA that accumulates RG in combination 

with an exogenous β-glucosidase was effective in inhibiting the formation of ACF in the 

distal colon of CF-1 mice. Neither of these treatments alone was effective in reducing 

ACF. The number of ACF was reduced by an average of 32% and 87% in mice fed the 

TA with the exogenous glucosidase relative to mice fed the TA alone in two replicates 

where these groups were included together. ACF number was reduced by 52% in mice 

fed diets with purified Rag that was added in equal molar concentrations to that of the RG 
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in TA. The protective effect of the TA in combination with β-glucosidase was not due to 

the presence of other plant metabolites present in alfalfa since CA supplemented at 20% 

by dry weight into the diet did not inhibit ACF development in the colon of CF-1 mice 

regardless of whether or not β-glucosidase was added. These results imply that RG may 

not be bioavailable and modification of secondary metabolites by endogenous enzymes in 

the plant is an important consideration when assessing the potential health-benefits of a 

crop genetically-enhanced to produce high levels of these compounds. To our knowledge 

this is the first in-vivo demonstration of the potential health benefits of a genetically 

modified crop against a biomarker of cancer.  

      Resveratrol is found in low and variable amounts in relatively few sources in the 

human diet. Resveratrol content is very low in peanuts (< 1g/g wt) and grapes (< 10 

g/g fresh wt), which are two major dietary sources of resveratrol (12,25). Furthermore, 

the majority of resveratrol found in grapes is in the form of cis- or trans-piceid with the 

aglycone comprising only a small fraction of the detectible levels of resveratrol (< 0.6 µg 

Rag/g fresh wt). In the human diet, resveratrol is found in highest concentrations in red 

wine. However, analysis of different red wines reveal that trans-resveratrol-aglycone 

content of wines can vary (0.1 – 14 mg/L) depending upon the cultivar of grape used,  the 

climate in which the grapes were grown, and the maceration process followed (12, 26, 27, 

28). Trans-piceid has also been identified at appreciable levels in red wine, in some cases 

as high as 50.8 mg/L. Genetic-engineering strategies could provide a means to increase 

the dietary availability of resveratrol to humans through additional food options.  

     In addition to alfalfa, several other plants have been genetically modified to express 

resveratrol-synthase for agronomical purposes, including tobacco (29), rice (30), barley 

(31), kiwi (32), and apple (33). Resveratrol was reported to accumulate as a glucoside in 

all of these plants when the presence of the resveratrol was assessed. 

      The present study suggested that RG was not as bioavailable or as bioactive as Rag 

for ACF prevention, since the addition of an exogenous β-glucosidase to TA was required 

to achieve a reduction in AOM-induced ACF in the colorectal mucosa of CF-1 mice. TA 

alone was not protective against AOM-induced ACF. We hypothesize that the 

supplemented glucosidase catalyzed the liberation of the more bioavailable aglycone 

moiety from RG in diets containing the TA. Diets which contained the exogenous 

glucosidase with CA did not reduce the number of ACF in the colon of CF-1 mice, 

suggesting that the protective effect of the glucosidase was associated with the RG in the 

transgenic alfalfa. This was a surprising observation as alfalfa contains numerous 

secondary metabolites (34,35). The total concentration of flavonoids in alfalfa has been 

shown to range from 0.24 to 0.78% in dry matter with the majority of identified 

compounds being glycosides of apigenin, luteolin and tricin (34). The TA used in our 

study contained, on average, 0.015% RG by dry weight. It is possible that most of the 

natural-occurring polyphenols in alfalfa are not bioactive or some of the more active 

compounds are not present in very high concentrations. 
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      Few studies have reported on the bioactivity or bioavailability of RG. RG was shown 

to inhibit platelet aggregation (36) and inhibit thymine incorporation into DNA in Lewis 

lung carcinoma cells (37). However, the effective dose in the later study was 100 µM (IC 

> 1000 µM), bringing into question the potential bioactivity of RG. In the Kimura et al 

study (37), RG inhibited tumor growth in the paw of C57BL/6 mice that were 

transplanted with Lewis lung carcinoma cells, although his protective activity was 

achieved by the administration of very high doses of RG at 300 mg kg-1 daily for 32 days. 

Lower doses were not reported in this study. Assays conducted in Caco-2 monolayer 

systems reveal that the sodium-glucose co-transporter (38) and lactase phlorizin 

hydrolase (39) may play an important role in the absorption and deglycosylation of RG in 

the intestine. In the former study, the uptake of Rag in Caco-2 cells was more rapid than 

RG with the intercellular concentrations of Rag remaining at least 4 times higher than RG 

at all time points examined in Caco-2 cells that were treated with 150 µM of each 

compound (38). In a recent study, RG was detected in a variety of tissues, including the 

brain, heart, liver and lungs in Wistar rats within 20 minutes of the rats receiving a single, 

oral dose of piceid (50 mg/kg body weight) suspended in a 5% sodium 

carboxymethylcellulose solution (40). Plasma concentrations of RG reached a peak 

concentration of 0.9 ± 0.4 µM at 20 minutes post-dose administration. Unfortunately, 

side-by-side comparisons with Rag where not featured in this study. To our knowledge, 

the colon bioavailability of piceid has not yet been examined. 

      Rag was shown to inhibit chemically induced ACF in rodents in at least two other 

studies. Rag at daily doses of 200 μg kg-1 body weight via 10% ethanol in drinking water 

reduced the number, multiplicity and size of AOM-induced ACF in the colorectal mucosa 

of F344 rats (18).  In a more recent study, Sengottuvelan et al showed that Rag (8 mg kg-1 

body weight p.o., daily) reduced the number, multiplicity and size of ACF in rats injected 

weekly with 1,2-dimethylhydrazine (DMH) (20 mg kg-1 body weight for 15 weeks) (41). 

This group has also reported that Rag reduced the number of DMH-induced colonic 

tumors in rats regardless of whether Rag was administered before or following DMH 

injections (41, 42). In contrast, reports of resveratrol treatment on tumor incidence in 

C57BL/6J APCMin mice with genetic colon cancers caused by mutant adenomotosis 

polyposis coli (APC) have been inconsistent (43, 44). Studies with Rag have been 

conducted in Min mice between the ages of 4-5 weeks, which may represent a more 

advanced stage of cancer since preneoplastic lesions begin to develop in the small 

intestine of these mice in utero (45) and may indicate that resveratrol may be more value 

as a preventive rather than a therapeutic agent in the colon. A number of biological 

activities have been ascribed to resveratrol which may, at least partially, explain any anti-

cancer properties that the chemical may possess. Resveratrol has been demonstrated to 

prevent free-radical formation and have anti-mutagenic activity; inhibit activity of 

cytochrome P450 enzymes; inhibit cyclooxygenase-2 catalyzed reactions; induce phase-2 

drug metabolism; induce cell cycle arrest and apoptosis (46 and references therein). 
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Additional studies are warranted to determine resveratrol’s mechanism of action at the 

site of the colon.  

     In conclusion, we have demonstrated that transgenic alfalfa that accumulates 

resveratrol-glucoside did not inhibit AOM-induced ACF in the colorectal mucosa of CF-

1 mice, but the addition of an exogenous glucosidase enzyme to diet preparations 

containing the transgenic alfalfa seemed to be protective against AOM induction of ACF 

in the distal colon of CF-1 mice. Our data suggests that future studies on the 

bioavailability and bioactivity of RG are essential in determining the therapeutic value of 

resveratrol as a nutraceutical. In addition, we have offered a strategy whereby other 

transgenic crops may be analyzed for their heath-benefiting value.   
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Table 1: Comparison of Diets 

 

 Basal Diets with alfalfa 

Casein (g/kg) 200 200 

Dextrin (g/kg) 499.5 299.5 

Alfalfa (g/kg) - 200  

Dextrose (g/kg) 150 150 

Fiber (g/kg) 50 50 

Mineral mix (g/kg) 35 35 

Choline (g/kg) 2.5 2.5 

Methionine (g/kg) 3.0 3.0 

Vitamin mix (g/kg) 10 10 

Corn oil (g/kg) 50 50 

 

 

Trans-resveratrol-aglycone was added to some basal and control alfalfa diets at 0.002% 

by dry weight which was equivalent to the number of moles of piceid present in diets 

containing the transgenic alfalfa which accumulates 170 µg piceid/g wt of plant. In 

follow-up studies, α-galactosidase was added at 860 β-glucosidase U (2600 α-

galactosidase U/kg) to basal, control alfalfa and transgenic alfalfa diets. 
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Table 2: Number of azoxymethane-induced Aberrant Crypt Foci and multiplicity (Average number of aberrant crypts per focus) in the 

colon of CF- mice.  

    Region of colon (ACF/mouse)  

Treatment N Gain in Body 

Weight 

(Initial Body 

weight) (g) 

(ANOVA p-

value=0.5) 

Total 

ACF/mouse 

(ANOVA p-

value =0.09) 

D (ANOVA 

p-

value=.0023) 

M (ANOVA 

p-value 

=0.3) 

P (ANOVA p-

value =.11) 

Multiplicity 

(AC/focus) 

(ANOVA p-

value=0.3) 

Basal (BD) 25 2.8 ± 0.3  

(26.9 ± 0.4) 

8.4 ± 1.1 5.4 ± 0.7 2.8 ± 0.5 0.2 ± 0.2 1.5 ± 0.1 

Control Alfalfa 

(CA) 

17 3.3 ± 0.5  

(26.3 ± 0.5) 

7.9 ± 1.3 4.3 ± 0.9 3.1 ± 0.6 0.5 ± 0.2 1.5 ± 0.1 

Transgenic 

Alfalfa (TA) 

21 3.1 ± 0.4  

(27.1 ± 0.5) 

7.2 ± 1.2 5.1 ± 0.8 1.9 ± 0.6 0.4 ± 0.2 1.5 ± 0.1 

BD + 

resveratrol-

aglycone 

30 3.4 ± 0.3  

(25.8 ± 0.4) 

4.4 ± 1.01 1.9 ± 0.62 2.2 ± 0.5 0.3 ± 0.1 1.3 ±  0.1 

 

 

Values represent mean ± SE (2-way ANOVA with student’s t-test post-hoc analysis; SAS software). This experiment was conducted 

in three replicates with between 3 and 10 mice per group. The regions of the colon are defined as follows: D= distal 2 cm, M= second 

2cm from distal end, P=proximal 1 cm. 1 p<0.05 compared to BD and CA groups for total ACF. 2p<0.05 compared to BD, CA and TA 

treatments in rectal region of colon. ACF size was also assessed in some of the studies but no significant difference between 

treatments was observed in all of the studies where this parameter was examined (p>0.33 for all studies; one-way ANOVA with a 
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student’s t-test as the post-hoc analysis; SAS software). Mice from each treatment were also injected with saline. Aberrant crypts were 

observed in 8% of saline treated mice (4/50), but were not confined to any single treatment.  
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Table 3: The addition of β-glucosidase activity to transgenic alfalfa diets reduced the number of ACF in the colon of CF- mice. 

 

  Without Enzyme With Enzyme   

Treatment 

Comparison 

Study N Mean ± SE 

(Total colon) 

Mean ± SE 

(Distal 2 cm) 

N Mean ± SE 

(Total colon) 

Mean ± SE 

(Distal 2 cm) 

p-value* 

(Total 

colon) 

p-value* 

(Distal 2 

cm) 

 

BD vs. BD+E 

 

1 

 

10 

BD 

6.9 ± 1.5 

BD 

3.8 ± 0.9 

 

10 

BD+E 

9.9  ± 1.5 

BD+E 

4.6 ± 0.92 

 

> 0.1 

(0.2, 0.1) 

 

0.7 

(0.5, 0.6) 

2 10 8.6 ± 1.3 5.9 ± 0.1 9 11.7 ± 1.4      6.6±1.0 

 

 

 

CA vs. CA+E 

 

1 

 

10 

CA 

3.3 ± 1.5 

 

CA 

1.5±0.93 

 

 

10 

CA+E 

5.1 ± 1.5 

CA+E 

2.2 ± 0.93 

 

 

>0.3 

(0.3, 0.5) 

 

 

>0.5 

(0.6, 0.4) 2 4 10.3 ±  2.4 

 

7.3 ± 1.6 

 

4 8.0 ± 2.1 5.3±1.6 

 

 

TA vs. TA+ E 

 

1 

 

10 

TA 

3.0 ± 0.9 

 

TA 

1.9±0.8 

 

 

10 

TA+E 

0.8 ± 0.9 

TA+E 

0.6 ± 0.4 

 

< 0.01 

(0.06, 

<0.01) 

 

<0.01 

(0.1, 

<0.005) 2 3 10.4 ± 2.4 

 

8.7 ± 1.8 

 

3 1.3 ± 2.4 1.0±1.8 

 

Values represent mean ± SE. Diets are defined as follows: BD= basal diet, CA=control alfalfa, TA=transgenic alfalfa, E= α-

galactosidase and R= resveratrol-aglycone. Diets with α-galactosidase contained 2600 α-galactosidase U/kg diet and 860 β-

glucosidase U/kg diet. *Comparing no enzyme vs. enzyme treatments p-values were derived using Fisher’s combination of tests of 

significance analysis. P-values for individual studies are listed in the parantheses under the combined p-values for each comparison.  
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Figure 1: β-glucosidase activity of α-galactosidase (National Enzyme Company) and β-

glucosidase (G0395, Sigma Aldrich). Β-glucosidase activity was expressed as a function 

of 4-methylumbelliferone formed after incubating the enzymes with the substrate 4-

methylumbelliferone- β-glucoside for 30 minutes @ 37ºC. Values represent means ± SE 

(N=6). Linear parameters were as follows: (for α-galactosidase) slope= 2 x 10-5, y-

intercept= 0.0007 and R2=0.9993; (for β-glucosidase) slope=3 X 10-6, y-intercept=--.0001 

and R2=0.997. Fluorescent units (recorded at 360 nm excitation and 450 nm emission) 

were converted into µmoles of 4-methylumbelliferone formed based on the relationship 

between fluorescence and concentration of 4-MU authentic standards (see insert). This 

relationship was linear in the concentration range of 0.003-0.05 umoles of 4-MU (linear 

parameters were:  slope= 34142, y-intercept = 136.89 and R2= 0.9683). 
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